Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(13): eadl3452, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38552008

RESUMO

The Cambrian explosion, one of the most consequential biological revolutions in Earth history, occurred in two phases separated by the Sinsk event, the first major extinction of the Phanerozoic. Trilobite fossil data show that Series 2 strata in the Ross Orogen, Antarctica, and Delamerian Orogen, Australia, record nearly identical and synchronous tectono-sedimentary shifts marking the Sinsk event. These resulted from an abrupt pulse of contractional supracrustal deformation on both continents during the Pararaia janeae trilobite Zone. The Sinsk event extinction was triggered by initial Ross/Delamerian supracrustal contraction along the edge of Gondwana, which caused a cascading series of geodynamic, paleoenvironmental, and biotic changes, including (i) loss of shallow marine carbonate habitats along the Gondwanan margin; (ii) tectonic transformation to extensional tectonics within the Gondwanan interior; (iii) extrusion of the Kalkarindji large igneous province; (iv) release of large volumes of volcanic gasses; and (v) rapid climatic change, including incursions of marine anoxic waters and collapse of shallow marine ecosystems.

2.
Mater Today Bio ; 25: 100973, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38322663

RESUMO

Extrusion-based bioprinting has demonstrated significant potential for manufacturing constructs, particularly for 3D cell culture. However, there is a greatly limited number of bioink candidates exploited with extrusion-based bioprinting, as they meet the opposing requirements for printability with indispensable rheological features and for biochemical functionality with desirable microenvironment. In this study, a blend of silk fibroin (SF) and iota-carrageenan (CG) was chosen as a cell-friendly printable material. The SF/CG ink exhibited suitable viscosity and shear-thinning properties, coupled with the rapid sol-gel transition of CG. By employing photo-crosslinking of SF, the printability with Pr value close to 1 and structural integrity of the 3D constructs were significantly improved within a matter of seconds. The printed constructs demonstrated a Young's modulus of approximately 250 kPa, making them suitable for keratinocyte and myoblast cell culture. Furthermore, the high cell adhesiveness and viability (maximum >98%) of the loaded cells underscored the considerable potential of this 3D culture scaffold applied for skin and muscle tissues, which can be easily manipulated using an extrusion-based bioprinter.

3.
Sci Adv ; 10(1): eadi6678, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38170772

RESUMO

Chaetognaths, with their characteristic grasping spines, are the oldest known pelagic predators, found in the lowest Cambrian (Terreneuvian). Here, we describe a large stem chaetognath, Timorebestia koprii gen. et sp. nov., from the lower Cambrian Sirius Passet Lagerstätte, which exhibits lateral and caudal fins, a distinct head region with long antennae and a jaw apparatus similar to Amiskwia sagittiformis. Amiskwia has previously been interpreted as a total-group chaetognathiferan, as either a stem-chaetognath or gnathostomulid. We show that T. koprii shares a ventral ganglion with chaetognaths to the exclusion of other animal groups, firmly placing these fossils on the chaetognath stem. The large size (up to 30 cm) and gut contents in T. koprii suggest that early chaetognaths occupied a higher trophic position in pelagic food chains than today.


Assuntos
Evolução Biológica , Cadeia Alimentar , Animais , Fósseis , Força da Mão , Filogenia
4.
Biomacromolecules ; 25(1): 379-387, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38108296

RESUMO

Mussels are marine organisms that are capable of constructing an underwater adhesion between their bodies and rigid structures. It is well known that mussels achieve underwater adhesion through the presence of mussel adhesive proteins (MAPs) that contain high levels of 3,4-dihydroxyphenylalanine (DOPA). Although the extraordinary underwater adhesive properties of mussels are attributed to DOPA, its capacity to play a dual role in surface adhesion and internal cohesion is inherently limited. However, mussels employ a combination of chemical moieties, not just DOPA, along with anatomical components, such as plaque and byssus, in underwater adhesion. This also involves junction proteins that connect the plaque and byssus. In this study, a novel hybrid MAP was bioengineered via the fusion of the plaque protein (foot protein type 1) and the histidine-rich domain of the junction protein (foot protein type 4). To achieve direct adhesion underwater, the adhesive should maintain surface adhesion without disintegrating. Notably, the histidine-Zn-coordinated hybrid MAP hydrogel maintained a high surface adhesion ability even after cross-linking because of the preservation of its unoxidized and non-cross-linked DOPA moieties. The formulated adhesive hydrogel system based on the bioengineered hybrid MAP exhibited self-healing properties, owing to the reversible metal coordination bonds. The developed adhesive hydrogel exhibits outstanding levels of bulk adhesion in underwater environments, highlighting its potential as an effective adhesive biomaterial. Therefore, the introduction of histidine-rich domains into MAPs may be applied in various studies to formulate mussel-inspired adhesives with self-healing properties and to fully utilize the adhesive ability of DOPA.


Assuntos
Adesivos , Bivalves , Animais , Adesivos/química , Histidina , Zinco , Hidrogéis , Proteínas/química , Di-Hidroxifenilalanina/química , Bivalves/metabolismo
5.
Zoological Lett ; 9(1): 22, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012802

RESUMO

Phylum Tardigrada is represented by microscopic eight-legged panarthropods that inhabit terrestrial and marine environments. Although tardigrades are emerging model animals for areas of research including physiology, evolutionary biology, and astrobiology, knowledge of their external morphology remains insufficient. For instance, homologies between marine and terrestrial relatives largely remain unexplored. In the present study we provide detailed pictures of the head sensory organs in a new tardigrade, Ramazzottius groenlandensis sp. nov. Specimens were collected from a mixed moss and lichen sample on Ella Island, East Greenland. The new species differs from congeneric species in the presence of polygonal sculpturing on the dorsal cuticle, which is accentuated in the posterior region of the body, a lateral papilla on leg IV, and distinctive egg morphology. A Bayesian phylogenetic analysis (18S rRNA + 28S rRNA + COI) places the new species within the genus Ramazzottius with high confidence. Interestingly, the new species shows a full set of well-developed cephalic organs, which correspond to all sensory fields found in eutardigrades. Details on the full set of head organs were present only for heterotardigrades. The surface of these organs is covered with small pores, which presumably play a sensory role. This discovery suggests the homology of head sensory structures between heterotardigrades and eutardigrades, implying that the distinctive arrangement and positioning of sensory organs on the head is a plesiomorphic feature of tardigrades. Moreover, we find that the Ramazzottius oberhaeuseri morphotype forms a morphogroup, not a monophyletic species complex.

6.
Arthropod Struct Dev ; 77: 101308, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37832459

RESUMO

The trilobite hypostome is a biomineralized ventral plate that covers the mouth, but its evolutionary origin remains controversial. The labrum is a lobe-like structure that can take on variety of shapes in front of the mouth in arthropods, while the anterior sclerite refers to a cuticular plate articulated to the anterior margin of the head in some Cambrian arthropods. Here I present a perspective that views the trilobite hypostome as a fusion of the anterior sclerite and the labrum based on anatomical, topological, and developmental evidence. According to this perspective, the anterior lobe of the hypostome originated from the anterior sclerite, while the posterior lobe reflects a remnant of the sclerotized cover of the labrum. The convex anterior lobe housed the root of the eye stalks, represented by the palpebral ridges and the hypostomal wing, and the posterior lobe occasionally developed a pair of posterolateral extensions, as do the labra. The position of the antennal insertion was located in front of the posterior lobe, displaying a similar topology to the Cambrian arthropods with the labrum. The hypostome was present in many artiopodans except for the Conciliterga, in which the anterior sclerite was separate from the labrum.


Assuntos
Artrópodes , Fósseis , Animais , Evolução Biológica , Boca
7.
Proc Natl Acad Sci U S A ; 120(28): e2211251120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399417

RESUMO

Phylum Tardigrada (water bears), well known for their cryptobiosis, includes small invertebrates with four paired limbs and is divided into two classes: Eutardigrada and Heterotardigrada. The evolutionary origin of Tardigrada is known to lie within the lobopodians, which are extinct soft-bodied worms with lobopodous limbs mostly discovered at sites of exceptionally well-preserved fossils. Contrary to their closest relatives, onychophorans and euarthropods, the origin of morphological characters of tardigrades remains unclear, and detailed comparison with the lobopodians has not been well explored. Here, we present detailed morphological comparison between tardigrades and Cambrian lobopodians, with a phylogenetic analysis encompassing most of the lobopodians and three panarthropod phyla. The results indicate that the ancestral tardigrades likely had a Cambrian lobopodian-like morphology and shared most recent ancestry with the luolishaniids. Internal relationships within Tardigrada indicate that the ancestral tardigrade had a vermiform body shape without segmental plates, but possessed cuticular structures surrounding the mouth opening, and lobopodous legs terminating with claws, but without digits. This finding is in contrast to the long-standing stygarctid-like ancestor hypothesis. The highly compact and miniaturized body plan of tardigrades evolved after the tardigrade lineage diverged from an ancient shared ancestor with the luolishaniids.


Assuntos
Artrópodes , Tardígrados , Animais , Tardígrados/genética , Filogenia , Evolução Biológica , Invertebrados , Fósseis
8.
Nature ; 619(7970): 606-615, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37438521

RESUMO

The specific loss of midbrain dopamine neurons (mDANs) causes major motor dysfunction in Parkinson's disease, which makes cell replacement a promising therapeutic approach1-4. However, poor survival of grafted mDANs remains an obstacle to successful clinical outcomes5-8. Here we show that the surgical procedure itself (referred to here as 'needle trauma') triggers a profound host response that is characterized by acute neuroinflammation, robust infiltration of peripheral immune cells and brain cell death. When midbrain dopamine (mDA) cells derived from human induced pluripotent stem (iPS) cells were transplanted into the rodent striatum, less than 10% of implanted tyrosine hydroxylase (TH)+ mDANs survived at two weeks after transplantation. By contrast, TH- grafted cells mostly survived. Notably, transplantation of autologous regulatory T (Treg) cells greatly modified the response to needle trauma, suppressing acute neuroinflammation and immune cell infiltration. Furthermore, intra-striatal co-transplantation of Treg cells and human-iPS-cell-derived mDA cells significantly protected grafted mDANs from needle-trauma-associated death and improved therapeutic outcomes in rodent models of Parkinson's disease with 6-hydroxydopamine lesions. Co-transplantation with Treg cells also suppressed the undesirable proliferation of TH- grafted cells, resulting in more compact grafts with a higher proportion and higher absolute numbers of TH+ neurons. Together, these data emphasize the importance of the initial inflammatory response to surgical injury in the differential survival of cellular components of the graft, and suggest that co-transplanting autologous Treg cells effectively reduces the needle-trauma-induced death of mDANs, providing a potential strategy to achieve better clinical outcomes for cell therapy in Parkinson's disease.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neurônios Dopaminérgicos , Sobrevivência de Enxerto , Doenças Neuroinflamatórias , Doença de Parkinson , Linfócitos T Reguladores , Tirosina 3-Mono-Oxigenase , Humanos , Dopamina/análogos & derivados , Dopamina/metabolismo , Neurônios Dopaminérgicos/imunologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/transplante , Mesencéfalo/patologia , Doenças Neuroinflamatórias/etiologia , Doenças Neuroinflamatórias/imunologia , Doenças Neuroinflamatórias/prevenção & controle , Doenças Neuroinflamatórias/terapia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Doença de Parkinson/cirurgia , Doença de Parkinson/terapia , Tirosina 3-Mono-Oxigenase/deficiência , Tirosina 3-Mono-Oxigenase/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/transplante , Terapia Baseada em Transplante de Células e Tecidos/métodos , Animais , Camundongos , Ratos , Oxidopamina/metabolismo , Sobrevivência de Enxerto/imunologia , Morte Celular , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Neostriado/metabolismo , Fatores de Tempo , Proliferação de Células , Resultado do Tratamento
9.
Appl Biol Chem ; 66(1): 13, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843874

RESUMO

CRISPR-Cas systems have been widely used in genome editing and transcriptional regulation. Recently, CRISPR-Cas effectors are adopted for biosensor construction due to its adjustable properties, such as simplicity of design, easy operation, collateral cleavage activity, and high biocompatibility. Aptamers' excellent sensitivity, specificity, in vitro synthesis, base-pairing, labeling, modification, and programmability has made them an attractive molecular recognition element for inclusion in CRISPR-Cas systems. Here, we review current advances in aptamer-based CRISPR-Cas sensors. We briefly discuss aptamers and the knowledge of Cas effector proteins, crRNA, reporter probes, analytes, and applications of target-specific aptamers. Next, we provide fabrication strategies, molecular binding, and detection using fluorescence, electrochemical, colorimetric, nanomaterials, Rayleigh, and Raman scattering. The application of CRISPR-Cas systems in aptamer-based sensing of a wide range of biomarkers (disease and pathogens) and toxic contaminants is growing. This review provides an update and offers novel insights into developing CRISPR-Cas-based sensors using ssDNA aptamers with high efficiency and specificity for point-of-care setting diagnostics.

10.
Bioessays ; 45(3): e2200167, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36693795

RESUMO

Paleoneuranatomy is an emerging subfield of paleontological research with great potential for the study of evolution. However, the interpretation of fossilized nervous tissues is a difficult task and presently lacks a rigorous methodology. We critically review here cases of neural tissue preservation reported in Cambrian arthropods, following a set of fundamental paleontological criteria for their recognition. These criteria are based on a variety of taphonomic parameters and account for morphoanatomical complexity. Application of these criteria shows that firm evidence for fossilized nervous tissues is less abundant and detailed than previously reported, and we synthesize here evidence that has stronger support. We argue that the vascular system, and in particular its lacunae, may be central to the understanding of many of the fossilized peri-intestinal features known across Cambrian arthropods. In conclusion, our results suggest the need for caution in the interpretation of evidence for fossilized neural tissue, which will increase the accuracy of evolutionary scenarios. Also see the video abstract here: https://youtu.be/2_JlQepRTb0.


Assuntos
Artrópodes , Tecido Nervoso , Animais , Evolução Biológica , Fósseis , Artrópodes/anatomia & histologia , Artrópodes/fisiologia , Paleontologia
11.
J Mov Disord ; 16(1): 22-41, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36628428

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, affecting 1%-2% of the population over the age of 65. As the population ages, it is anticipated that the burden on society will significantly escalate. Although symptom reduction by currently available pharmacological and/or surgical treatments improves the quality of life of many PD patients, there are no treatments that can slow down, halt, or reverse disease progression. Because the loss of a specific cell type, midbrain dopamine neurons in the substantia nigra, is the main cause of motor dysfunction in PD, it is considered a promising target for cell replacement therapy. Indeed, numerous preclinical and clinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells remains fraught with controversy due to fundamental ethical, practical, and clinical limitations. Groundbreaking work on human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, coupled with extensive basic research in the stem cell field offers promising potential for hPSC-based cell replacement to become a realistic treatment regimen for PD once several major issues can be successfully addressed. In this review, we will discuss the prospects and challenges of hPSC-based cell therapy for PD.

12.
J Comput Biol ; 29(12): 1305-1323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36525308

RESUMO

A standard paradigm in computational biology is to leverage interaction networks as prior knowledge in analyzing high-throughput biological data, where the data give a score for each vertex in the network. One classical approach is the identification of altered subnetworks, or subnetworks of the interaction network that have both outlier vertex scores and a defined network topology. One class of algorithms for identifying altered subnetworks search for high-scoring subnetworks in subnetwork families with simple topological constraints, such as connected subnetworks, and have sound statistical guarantees. A second class of algorithms employ network propagation-the smoothing of vertex scores over the network using a random walk or diffusion process-and utilize the global structure of the network. However, network propagation algorithms often rely on ad hoc heuristics that lack a rigorous statistical foundation. In this work, we unify the subnetwork family and network propagation approaches by deriving the propagation family, a subnetwork family that approximates the sets of vertices ranked highly by network propagation approaches. We introduce NetMix2, a principled algorithm for identifying altered subnetworks from a wide range of subnetwork families. When using the propagation family, NetMix2 combines the advantages of the subnetwork family and network propagation approaches. NetMix2 outperforms other methods, including network propagation on simulated data, pan-cancer somatic mutation data, and genome-wide association data from multiple human diseases.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Biologia Computacional/métodos , Algoritmos
13.
Ecol Evol ; 12(5): e8879, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35516419

RESUMO

In mammals, the gut microbiome is vertically transmitted during maternal lactation at birth. In this study, we investigated the gut microbiome and diets of muskox, a large herbivore inhabiting in the high Arctic. We compared the microbiota composition using bacterial 16S rRNA gene sequencing and diets using stable isotope analysis of muskox feces of six female adults and four calves on Ella Island, East Greenland. Firmicutes were the most abundant bacterial phylum in both the adults and calves, comprising 94.36% and 94.03%, respectively. Significant differences were observed in the relative abundance of the two Firmicutes families. The adults were primarily dominated by Ruminococcaceae (73.90%), and the calves were dominated by both Ruminococcaceae (56.25%) and Lachnospiraceae (24.00%). Stable isotope analysis of the feces in the study area revealed that both adults and calves had similar ranges of 13C and 15N, likely derived from the dominant diet plants. Despite their similar diets, the different gut microbiome compositions in muskox adults and calves indicate that the gut microbiome of the calves may not be fully colonized to the extent of that of the adults.

14.
Cell Genom ; 2(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35382456

RESUMO

Recent genome-wide CRISPR-Cas9 loss-of-function screens have identified genetic dependencies across many cancer cell lines. Associations between these dependencies and genomic alterations in the same cell lines reveal phenomena such as oncogene addiction and synthetic lethality. However, comprehensive identification of such associations is complicated by complex interactions between genes across genetically heterogeneous cancer types. We introduce and apply the algorithm SuperDendrix to CRISPR-Cas9 loss-of-function screens from 769 cancer cell lines, to identify differential dependencies across cell lines and to find associations between differential dependencies and combinations of genomic alterations and cell-type-specific markers. These associations respect the position and type of interactions within pathways: for example, we observe increased dependencies on downstream activators of pathways, such as NFE2L2, and decreased dependencies on upstream activators of pathways, such as CDK6. SuperDendrix also reveals dozens of dependencies on lineage-specific transcription factors, identifies cancer-type-specific correlations between dependencies, and enables annotation of individual mutated residues.

15.
Immunol Med ; 45(2): 119-127, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35130134

RESUMO

Th17 cells are implicated in the pathogenesis of several autoimmune diseases. During the inflammation, Th17 cells exposed to IL-12 can shift towards the Th1 phenotype. These shifted cells are defined as 'non-classic Th1 cells'. Th17-derived non-classic Th1 cells play a critical role in late-onset chronic inflammatory diseases and are more pathogenic than the unshifted Th17 cells. Eomes is a transcription factor highly expressed in non-classic Th1 cells. To study the functional role of Eomes without genetic alteration, novel recombinant protein, ntEomes-TMD, was generated by fusing TMD of Eomes and Hph-1-PTD that facilitate intracellular delivery of its cargo molecule. ntEomes-TMD was delivered into the nucleus of the cells without influencing the T cell activation and cytotoxicity. ntEomes-TMD specifically inhibited the Eomes- and ROR-γt-mediated transcription and suppressed the Th1 and Th17 differentiation. Interestingly, ntEomes-TMD blocked the generation of non-classic Th1 cells from Th17 cells, leading to the inhibition of IFN-γ and GM-CSF secretion. In EAE, ntEomes-TMD alleviated the symptoms of EAE, and the combination treatment using ntEomes-TMD and anti-IL-17 mAb together showed better therapeutic efficacy than anti-IL-17 mAb treatment. The results suggest that ntEomes-TMD can be a new therapeutic reagent for treating chronic inflammatory diseases associated with non-classic Th1 cells.


Assuntos
Encefalomielite Autoimune Experimental , Células Th17 , Animais , Diferenciação Celular , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Inflamação , Células Th1/metabolismo , Células Th1/patologia , Células Th17/metabolismo , Células Th17/patologia
16.
Biodivers Data J ; 10: e90200, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761531

RESUMO

Here we report the complete mitochondrial genome of the Arctic fairy shrimp, Branchinectapaludosa (Müller, 1788) (Anostraca, Branchinectidae), which was collected in the High Arctic of North Greenland. A complete 16,059 bp mitochondrion of B.paludosa was sequenced and assembled with the Illumina next generation sequencing platform. The B.paludosa mitogenome contains 13 PCGs, 22 tRNAs and 2 rRNA genes that are commonly observed in most metazoans and shows the conserved gene arrangement pattern of Anostraca. Our results of the phylogenomic analysis are consistent with the previous phylogenetic relationship, based on nuclear 18S ribosomal DNA. The B.paludosa mitogenome will be useful for understanding the geographical distribution and phylogenetic relationship of anostracans.

17.
R Soc Open Sci ; 8(12): 210829, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34909213

RESUMO

The Ediacaran-Cambrian transition and the following Cambrian Explosion are among the most fundamental events in the evolutionary history of animals. Understanding these events is enhanced when phylogenetic linkages can be established among animal fossils across this interval and their trait evolution monitored. Doing this is challenging because the fossil record of animal lineages that span this transition is sparse, preserved morphologies generally simple and lifestyles in the Ediacaran and Cambrian commonly quite different. Here, we identify derived characters linking some members of an enigmatic animal group, the cloudinids, which first appeared in the Late Ediacaran, to animals with cnidarian affinity from the Cambrian Series 2 and the Miaolingian. Accordingly, we present the first case of an animal lineage represented in the Ediacaran that endured and diversified successfully throughout the Cambrian Explosion by embellishing its overall robustness and structural complexity. Among other features, dichotomous branching, present in some early cloudinids, compares closely with a cnidarian asexual reproduction mode. Tracking this morphological change from Late Ediacaran to the Miaolingian provides a unique glimpse into how a primeval animal group responded during the Cambrian Explosion.

18.
Biomaterials ; 278: 121171, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34624751

RESUMO

Heart failure following myocardial infarction (MI), the primary cause of mortality worldwide, is the consequence of cardiomyocyte death or dysfunction. Clinical efforts involving the delivery of growth factors (GFs) and stem cells with the aim of regenerating cardiomyocytes for the recovery of structural and functional integrity have largely failed to deliver, mainly due to short half-lives and rapid clearance in in vivo environments. In this work, we selected and genetically fused four biofunctional peptides possessing angiogenic potential, originating from extracellular matrix proteins and GFs, to bioengineered mussel adhesive protein (MAP). We found that MAPs fused with vascular endothelial growth factor (VEGF)-derived peptide and fibronectin-derived RGD peptide significantly promoted the proliferation and migration of endothelial cells in vitro. Based on these characteristics, we fabricated advanced double-layered adhesive microneedle bandages (DL-AMNBs) consisting of a biofunctional MAP-based root and a regenerated silk fibroin (SF)-based tip, allowing homogeneous distribution of the regenerative factor via swellable microneedles. Our developed DL-AMNB system clearly demonstrated better preservation of cardiac muscle and regenerative effects on heart remodeling in a rat MI model, which might be attributed to the prolonged retention of therapeutic peptides as well as secure adhesion between the patch and host myocardium by MAP-inherent strong underwater adhesiveness.


Assuntos
Bivalves , Fator A de Crescimento do Endotélio Vascular , Animais , Bandagens , Células Endoteliais , Ratos , Cicatrização
19.
Acta Biomater ; 136: 56-71, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34551332

RESUMO

Organisms develop unique systems in a given environment. In the process of adaptation, they employ materials in a clever way, which has inspired mankind extensively. Understanding the behavior and material properties of living organisms provides a way to emulate these natural systems and engineer various materials. Silk is a material that has been with human for over 5000 years, and the success of mass production of silkworm silk has realized its applications to medical, pharmaceutical, optical, and even electronic fields. Spider silk, which was characterized later, has expanded the application sectors to textile and military materials based on its tough mechanical properties. Because silk proteins are main components of these materials and there are abundant creatures producing silks that have not been studied, the introduction of new silk proteins would be a breakthrough of engineering materials to open innovative industry fields. Therefore, in this review, we present diverse silk and silk-like proteins and how they are utilized with respect to organism's survival. Here, the range of organisms are not constrained to silkworms and spiders but expanded to other insects, and even marine creatures which produce silk-like proteins that are not observed in terrestrial silks. This viewpoint broadening of silk and silk-like proteins would suggest diverse targets of engineering to design promising silk-based materials. STATEMENT OF SIGNIFICANCE: Silk has been developed as a biomedical material due to unique mechanical and chemical properties. For decades, silks from various silkworm and spider species have been intensively studied. More recently, other silk and silk-like proteins with different sequences and structures have been reported, not only limited to terrestrial organisms (honeybee, green lacewing, caddisfly, and ant), but also from marine creatures (mussel, squid, sea anemone, and pearl oyster). Nevertheless, there has hardly been well-organized literature on silks from such organisms. Regarding the relationship among sequence-structure-properties, this review addresses how silks have been utilized with respect to organism's survival. Finally, this information aims to improve the understanding of diverse silk and silk-like proteins which can offer a significant interest to engineering fields.


Assuntos
Bombyx , Aranhas , Animais , Organismos Aquáticos , Materiais Biocompatíveis , Humanos , Insetos , Seda
20.
Mitochondrial DNA B Resour ; 6(10): 2835-2837, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514145

RESUMO

To increase the mitogenome data available for robust phylogeny, we sequenced the complete mitochondrial DNA of the scale worm Eunoe nodosa (Sars, 1861) in the family Polynoidae of the order Phyllodocida. The complete mitogenome has 15,366 bp and has 28.9% A, 13.2% C, 19.0% G, and 38.8% T. Using MITOS and tRNAscan-SE, we identified the 13 typical protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a non-coding region. Phylogenomic analysis based on 27 in-group taxa belonging to five families of the subclass Errantia show congruence with the published phylogenetic relationship within the Polynoidae, in which E. nodosa lies in the clade of shallow water species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...